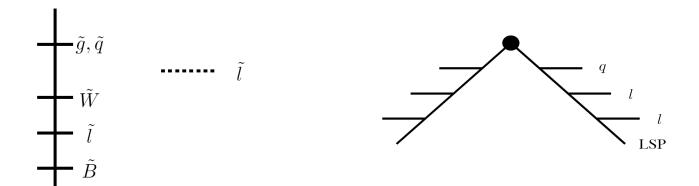
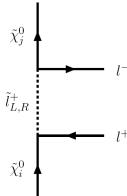

"Correlations in Supersymmetric Cascade Decays"

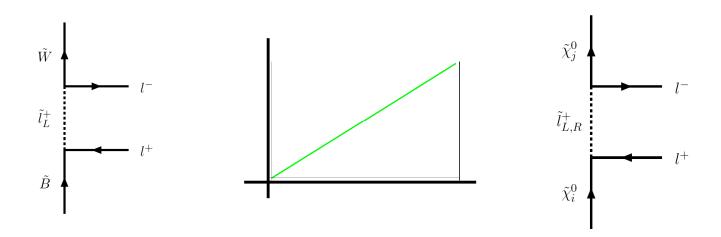

New LHC Signatures Workshop: Jan 5-12 University of Michigan

Michael Graesser (LANL)


work in progress with Jessie Shelton and Scott Thomas

- susy cascade decays provide abundant information on underlying susy model
- post-discovery:shapes of invariant distributions useful tool to discriminate between models
- Correlations between distributions provides useful check on theoretical assumptions

- Dilepton studies mostly focus on minimal sugra-like spectrum that has a particular ordering of neutralinos and sleptons
 - LM1-6' study points
- Dilepton distributions are ``triangles''
- other shapes in susy?

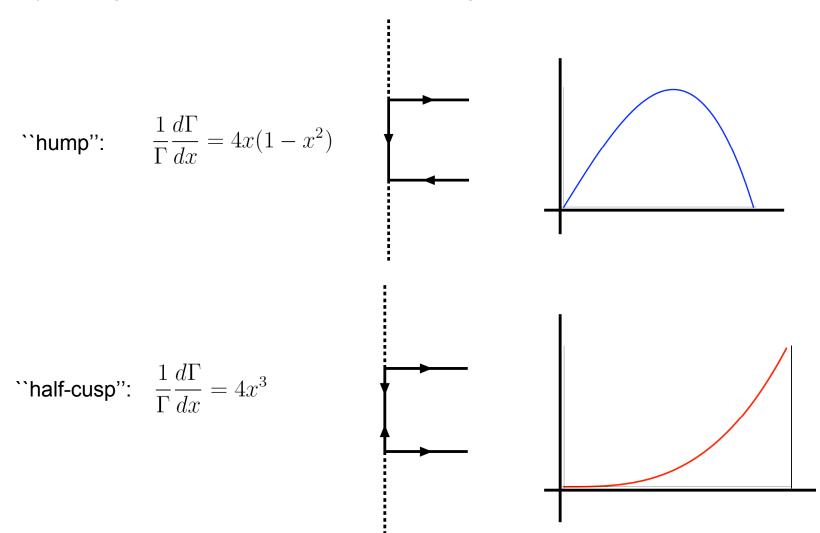


- worthwhile to consider two classes of spectrum, differ on ordering of sleptons relative to neutralinos
 - Msugra-like:

Interlaced: $\frac{-\tilde{g}}{-\tilde{g}}$

- "interlaced" spectrum can occur with gauge mediated susy breaking
- requirement that decays of squarks, gluinos populate sleptons
- patterns to di-fermion invariant mass distributions?
 - II, $I\tau$, $\tau\tau$
 - bl
- relax theoretical assumptions :
 - flavor alignment and universality
 - gaugino-higgsino mixing
 - Yukawa couplings, L-R mixing
 - R-parity vs. U(1) R-symmetry

Decays Through Intermediate Scalars


- Features:
 - OS only
 - M_II distribution is a ``triangle''
 - one endpoint, one gauge slepton only
 - SF only, but equal numbers of ee, uu; all with same endpoint and each with same ``triangle distribution''
 - no eu events

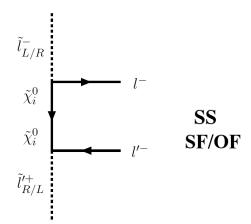
- include gaugino-higgsino mixing:
 - possibly multiple intermediate sleptons (2)
 - distribution sum of triangles, each with different endpoints
 - areas under two triangles give information on branching ratios

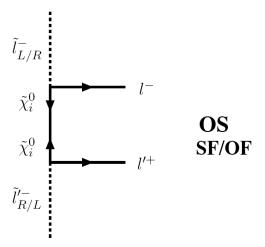
	Triangle	Hump	Half-Cusp
Opposite-Sign Same-Flavor	$\chi_i^0 \to \tilde{\ell}_{L,R}^{\mp} \ell^{\pm} \\ \hookrightarrow \chi_j^0 \ell^{\mp} \ell^{\pm}$		
Opposite-Sign Opposite-Flavor			
Same-Sign Same-Flavor			
Same-Sign Opposite-Flavor			

Table 1: SUSY di-leptons. First two generations. Neglect Yukawa couplings. No L-R mixing, no flavor violation.

Decays through intermediate neutralino(s) occurring with an interlaced spectrum:

(A.Barr; C.Athansiou, C.Lester & J.Smillie, B.Webber; Wang & Yavin; Killic, Wang and Yavin)

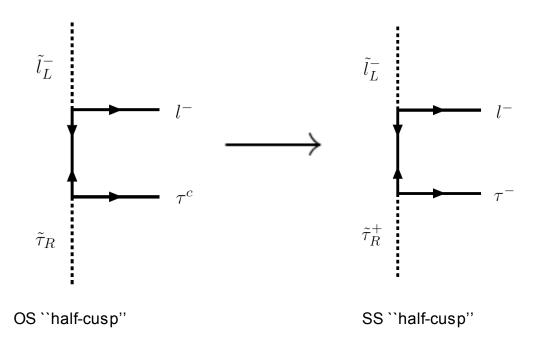

- No gaugino-higgsino mixing:
 - should see both OS and SS
 - OS has ``half-cusp'' but SS has ``hump'' distributions
 - endpoints of both OS and SS the same
 - In Same-Flavor and Opposite-Flavor channels: number of OS equals the number of SS
 - Opposite Flavor: ee, ue, uu all with same endpoints and number of ee+uu=eu
- including gaugino-higgsino mixing patterns are robust and generalize:


OS is a sum of half-cusp distributions with several endpoints

SS is a sum of hump distributions with same endpoints as OS

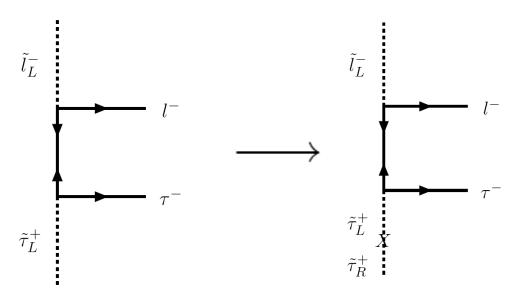
relative areas or locations of peaks provides information on relative branching fractions . Equal for OS and SS

- signing of leptons crucial: ``hump"+"halfcusp"=``triangle'' (A.Barr)
- no charge asymmetry needed if both leptons signed



	Triangle	Hump	Half-Cusp
Opposite-Sign Same-Flavor	$\chi_i^0 \to \tilde{\ell}_{L,R}^{\mp} \ell^{\pm}$ $\hookrightarrow \chi_j^0 \ell^{\mp} \ell^{\pm}$		$\begin{array}{c} \tilde{\ell}_{L,R}^{\pm} \to \chi_{i}^{0} \ell^{\pm} \\ \hookrightarrow \tilde{\ell}_{R,L}^{\pm} \ell^{\mp} \ell^{\pm} \end{array}$
Opposite-Sign Opposite-Flavor			$ \tilde{\ell}_{L,R}^{\pm} \to \chi_i^0 \ell^{\pm} \hookrightarrow \tilde{\ell}_{R,L}^{\prime \pm} \ell^{\prime \mp} \ell^{\pm} $
Same-Sign Same-Flavor		$\begin{array}{c} \tilde{\ell}_{L,R}^{\pm} \longrightarrow \chi_{i}^{0} \ell^{\pm} \\ \hookrightarrow \tilde{\ell}_{R,L}^{\mp} \ell^{\pm} \ell^{\pm} \end{array}$	
Same-Sign Opposite-Flavor		$\begin{array}{c} \tilde{\ell}_{L,R}^{\pm} \to \chi_{i}^{0} \ell^{\pm} \\ \hookrightarrow \tilde{\ell}_{R,L}^{\prime \mp} \ell^{\prime \pm} \ell^{\pm} \end{array}$	

Table 2: SUSY di-leptons. First two generations - neglect first two generation Yukawa couplings. No L-R mixing. No flavor violation.


Staus and taus

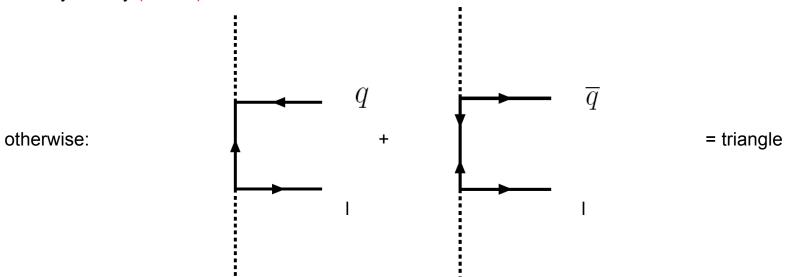
- Calculable modification to shapes :
 - distribution of $l\tau$, di-tau events modified due to missing energy
 - τ polarization
- τ Yukawa coupling cannot be neglected at large tan β
- L-R stau mixing may be important
- Decays involving Yukawa coupling change chirality and therefore charge of the outgoing τ
 - Neutralino decay producing OS ``half-cusp'' distribution gives with τ Yukawa coupling insertion a SS ``half-cusp'' distribution

L-R stau mixing has a similar effect:

L-R mixing introduces a new feature:

kinematically forbidden

SS "half-cusp"


- Unlike I=e,u dilepton events, once τ Yukawa coupling and/or L-R mixing effects are included, decays to final states involving τ 's do not have simple OS/half-cusp or SS/hump correlations
- SS distribution l_{τ} : hump+ ϵ half-cusp with same endpoint e.g. ϵ =1 for maximal L-R mixing
- correlated modification to OS distribution l_{τ} : half-cusp + ϵ ' hump
- L-R mixing can be an important effect on $I_{\tau,\tau\tau}$, distributions

	Triangle	Hump	Half-Cusp
Opposite-Sign Same-Flavor	$\chi_i^0 \to \tilde{\tau}_{1,2}^{\mp} \tau^{\pm} \\ \hookrightarrow \chi_j^0 \tau^{\mp} \tau^{\pm}$	$\begin{array}{c} \tilde{\tau}_1^{\pm} \to \ell^{\pm} \chi^0 \\ \hookrightarrow \tau^{\pm} \tau^{\mp} \tilde{\tau}_2^{\pm} \end{array}$	$\begin{array}{c} \tilde{\tau}_1^{\pm} \to \chi_i^0 \tau^{\pm} \\ \hookrightarrow \tilde{\tau}_2^{\pm} \tau^{\mp} \tau^{\pm} \end{array}$
Opposite-Sign Opposite-Flavor Same-Sign Same-Flavor		$\begin{split} \tilde{\ell}_{L/R}^{\pm} &\rightarrow \chi_{i}^{0} \ell^{\pm} \\ &\hookrightarrow \tau^{\mp} \ell^{\pm} \tilde{\tau}_{2}^{\pm} \\ \tilde{\tau}_{1}^{\pm} &\rightarrow \tau^{\pm} \chi_{i}^{0} \\ &\hookrightarrow \tau^{\pm} \ell^{\mp} \tilde{\ell}_{R/L}^{\pm} \\ \tilde{\tau}_{1}^{\pm} &\rightarrow \chi_{i}^{0} \tau^{\pm} \\ &\hookrightarrow \tilde{\tau}_{2}^{\mp} \tau^{\pm} \tau^{\pm} \end{split}$	$\begin{array}{c} \tilde{\tau}_{1}^{\pm} \rightarrow \chi_{i}^{0} \tau^{\pm} \\ \hookrightarrow \tilde{\ell}_{R/L}^{\pm} \ell^{\mp} \tau^{\pm} \\ \tilde{\ell}_{L/R}^{\pm} \rightarrow \chi_{i}^{0} \ell^{\pm} \\ \hookrightarrow \tilde{\tau}_{2}^{\prime \pm} \tau^{\mp} \ell^{\pm} \\ \tilde{\tau}_{1}^{\pm} \rightarrow \tau^{\pm} \chi_{i}^{0} \\ \hookrightarrow \tau^{\pm} \tau^{\pm} \tilde{\tau}_{2}^{\mp} \end{array}$
Same-Sign Opposite-Flavor		$\begin{array}{c} \tilde{\ell}_{L/R}^{\pm} \rightarrow \chi_{i}^{0} \ell^{\pm} \\ \hookrightarrow \tilde{\tau}_{2}^{\mp} \ell^{\pm} \tau^{\pm} \\ \tilde{\tau}_{1}^{\pm} \rightarrow \chi_{i}^{0} \tau^{\pm} \\ \hookrightarrow \tilde{\ell}_{R/L}^{\mp} \tau^{\pm} \ell^{\pm} \end{array}$	$\begin{array}{c} \tilde{\ell}_{L/R}^{\pm} \rightarrow \ell \chi_{i}^{0} \\ \hookrightarrow \tilde{\tau}_{2}^{\mp} \ell^{\pm} \tau^{\pm} \\ \tilde{\tau}_{1}^{\pm} \rightarrow \tau^{\pm} \chi_{i}^{0} \\ \hookrightarrow \tilde{\ell}_{R/L}^{\mp} \tau^{\pm} \ell^{\pm} \end{array}$

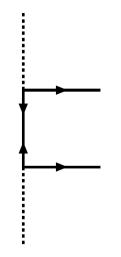
Table 4: SUSY di-leptons. Decays only involving $\tilde{\tau}$ listed. Gaugino-higgsino, τ Yukawa coupling and L-R mixing included.

Signed bl distributions

 Observation of a non-triangular ql distribution requires that both fermions be signed or charge asymmetry (A.Barr)

Signed bl distribution does not need a charge asymmetry, but:

$$\tilde{b}_{L,R} \to b \chi_i^0$$


Signed bl distribution contains information on both R and L sbottoms, as well as neutralino decays to either L and R sleptons

Symmetry of Dark Matter

- In the MSSM the LSP is stable because of a discrete symmetry (R-parity). But continuous U(1)_R symmetry well-motivated.
- Suppose a missing energy signal is discovered. Is the symmetry discrete or continuous?
- In U(1)_R symmetric limit gauginos acquire Dirac masses by marrying new chiral adjoints
 - lose U(1)_R violating decay :

$$\tilde{l}_L^- \to \tilde{l}_R^- l^+ l^-$$

- no adjacent OS ``half-cusp'' distributions in an interlaced spectrum
- distribution important: dileptons higher up decay chain from intermediate slepton, but those give OS triangle

Superfield	$U(1)_R$
L	+1
E^c	+1
$H_{u,d}$	0
Component	
Fields	
$ ilde{G}$	+1
ψ_{SM}	0
$\widetilde{\widetilde{l}_L^-}$ $\widetilde{\widetilde{l}_R^-}$	+1
$ ilde{l}_R^-$	-1
$h_{u,d}$	0

	Triangle	Hump	Half-Cusp
Opposite-Sign Same-Flavor	$\chi_i^0 \to \tilde{\ell}_{L,R}^{\mp} \ell^{\pm} \\ \hookrightarrow \chi_j^0 \ell^{\mp} \ell^{\pm}$		
Opposite-Sign Opposite-Flavor			
Same-Sign Same-Flavor		$\begin{array}{c} \tilde{\ell}_{L,R}^{\pm} \to \chi_{i}^{0} \ell^{\pm} \\ \hookrightarrow \tilde{\ell}_{R,L}^{\mp} \ell^{\pm} \ell^{\pm} \end{array}$	
Same-Sign Opposite-Flavor		$\begin{array}{c} \tilde{\ell}_{L,R}^{\pm} \longrightarrow \chi_{i}^{0} \ell^{\pm} \\ \hookrightarrow \tilde{\ell}_{R,L}^{\prime \mp} \ell^{\prime \pm} \ell^{\pm} \end{array}$	

Table 3: SUSY di-leptons. First two generations - neglect first two generation Yukawa couplings. No L-R mixing. No flavor violation. $U(1)_R$ symmetry conservation.

Summary

- If susy exists, potential for rich pattern of dilepton distributions and correlations between observables
 - ``triangles'' mSUGRA-like points (LM1-LM6'...)
 - ``humps'' and ``half-cusps'' for an ``interlaced'' spectrum (minimal gauge-mediation, higgsino-LSP like,....)
 - Pattern to correlations if susy; complete pattern of correlations not filled out
 - Relaxed number of assumptions: flavor conservation and flavor universality; gaugino-higgsino mixing; Yukawa couplings;
 - $\tau\tau,\tau$ l
 - signed bl
- discriminate between continuous and discrete symmetries
- Interesting to apply ``Rutgers Ensemble Method'' to reduce combinatorial confusion (see Eva's talk); study required
- signals soon after discovery